

Thermal Energy Storage

Arun Majumdar Director, ARPA-E

US Energy Diagram

Energy Supply Systems

Current System Architecture

Rate of Fuel Use, $F = F_E + F_H$

National Impact of Integrated Energy Supply Systems – Ideal Scenarios

	Today	Heat Coming from Integrated Systems	Heat & Air Conditioning Coming from Integrated Systems
Buildings Site Electrical Load (Quads)	9	9	7.5
Building Site Heat Load (Quads)	10	18	17
Primary Energy Consumption (Quads)	9 x 3.2 +10 = 38.8	27	24.5
Primary Energy Saved (Quads)		11.8 (30%)	14.3 (37%)

US Primary Energy Consumption (Annual) ≈ **100 Quads**

Key Issues for Thermal Storage

- Time Shift: Electricity and heat demand do not always coincide
- **Storage Time**: Minutes to months; Insulation free(?)
- Discharge Time: Minutes to hours; Heat exchangers systems
- Energy Density: High energy density by mass and volume (kWhr/kg, kWhr/L)
- Low and High: Both low temperature (273-320 K) and high temperature (≈1000 K) minimize exergy loss and control heat transfer rates
- Cost: \$/kWhr, \$/kW

Today's Approaches – Sensible Heat

Storage Water Heater

$$Q = \Delta H = mC_p \left(T_2 - T_1 \right) \qquad \Delta S = mC_p \ln \left(\frac{T_2}{T_1} \right)$$

Thermal time constant for heat loss

$$\tau = RC = \frac{\rho VC_p}{hA} \sim L\left(\frac{\rho C_p}{h}\right) \sim L\left(\frac{\rho C_p}{k/b}\right)$$

Water at 25 °C	liquid	4.1796
Water at 100 °C	liquid	4.2160
Aluminium	solid	2.422
Copper	solid	3.45
Granite	solid	2.17
Iron	solid	3.537
Paraffin wax	solid	2.325

Hot water outlet Pressure/ Vent pipe temperature Cold water inlet relief valve Flue tube/ heat exchanger Flue baffle Anode rod Insulation Thermostat and gas valve Gas burner Combustion air openings

Heat loss barrier is kinetic, not thermodynamic

Today's Approaches – Phase Change

$$\Delta G = \Delta H - T \Delta S$$

Heat Storage in Chemical Bonds

Heat Storage in Disorder

During Phase Change atConstant Pressure

$$\Delta G = 0; \quad T = \frac{\Delta H}{\Delta S}$$

Phase Change Materials

Compound	Melting Point [°C]	Enthalpy of Fusion [kJ/kg]	Density of Solid/Liquid [kg/m³]	Boiling Point [°C]	Enthalpy of Vaporization [kJ/kg]	Density of Liquid/Vapor [kg/m³]
Water	0	334	917/1000	100	2,258	958/0.6
Lauric Acid	44	212	1007/862			
Paraffin C ₁₆ –C ₂₈	42–44	190	910/765			
Na ₂ SiO ₃ .5H ₂ O	48	267	1450/1280			
MgCl ₂ -6H ₂ O	117	169	1570/1450			
KNO ₃	334	266	2110/			
MgCl ₂	714	452	2140/			
NaCl	800	470	2160/			

Heat Loss Barrier is Nucleation

$$\Delta G = \underbrace{V\Delta h}_{Heat\ Storage\ in} - \underbrace{TV\Delta s}_{Increase\ in} + \underbrace{\gamma A}_{Surface\ Energy}$$

What else?

Can we control barrier for nucleation?

Can we achieve insulation-free thermal energy storage?

Designer Chemical Reactions & Systems

$$A:B \Longrightarrow A+B$$

Chemistry Challenge

- High Δh (kJ/mol)
- High molar density, ρ (mol/m³)
- Low change in density: $\Delta \rho / \rho \approx 0$
- Tunable Δs (kJ/mol-K) which gives control of storage temperature, T_{stor}
- Tunable barrier for reverse reaction
 Physical separation of A and B
 Catalysis
- Low-cost of A and B (\$/kWhr)
- Non-toxic and non-reactive
- High thermal effusivity, $\sqrt{k \cdot \rho \cdot C}$

Engineering Challenge

- Short heating and recovery time achieved by heat exchanger design & constrained by cost (\$/kW)
- Controlled reverse reaction requires design for rapid mass transfer

An Example of Chemistry-Engineering Partnership that Changed the Course of Energy & Environmental History

Stratospheric sink for chlorofluoromethanes: chlorine atomc-atalysed destruction of ozone

CI CFC-12; R-12

Mario J. Molina & F. S. Rowland

Department of Chemistry, University of California, Irvine, California 92664

Nature Vol. 249 June 28 1974

Large losses of total ozone in Antarctica reveal seasonal ClO_x/NO_x interaction NATURE VOL. 315 16 MAY 1985

J. C. Farman, B. G. Gardiner & J. D. Shanklin

British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK

Vienna Convention for the Protection of the Ozone Layer: 1985

Montreal Protocol on Substances That Deplete the Ozone Layer: Initiated Sept. 16, 1987, enacted Jan. 1, 1989.

Mario Molina, F. Sherwood Rowland, Paul Crutzen – 1995 Nobel Prize in Chemistry

Development of HFCs for Air Conditioning & Refrigeration

1,1,1,2-Tetrafluoroethane, R-134a Started being used in early 1990s

Science-Engineering Partnership for Thermal Energy Storage

Can we tune and control interplay between ΔH , ΔS , ρ , $\Delta \rho$, effusivity in the presence of engineering constraints of cost, toxicity, reliability,?

- Chemical reactions
 - ♦ Gas (hydrogen, methane,...) storage technology for thermal storage
 - ♦ Binding of gases/liquids with ionic liquids or metalorganic frameworks (MOFs)
- Magnetic dipoles
- Electric monopoles ions in solution/plasma
- Electric dipoles

Integrated Energy Supply Systems: New Systems Architecture

Other Applications

Plug-in hybrids: Use battery and engine heat during use to heat battery during cold-weather startup

Electric vehicles: Heat generated during battery charging used for heating and air conditioning of passenger space

Grid-level electricity storage:
High-temperature thermal
storage + subsequent conversion
by engines at < \$100/kWhr

Refrigerated trucks and LNG Transport

Efficient use of heat in carbon capture plants

Nuclear: Heat storage for peak power

Brief Overview of ARPA-E

Catalyzing Energy Breakthroughs to Secure America's Future

ARPA-E's Mission & Means

Reduce Energy Imports

To enhance the economic and energy security of the U.S.

To ensure U.S. technological lead in developing and deploying advanced energy technologies

Reduce Energy-Related Emissions Improve Energy
___Efficiency

To overcome the long-term and high-risk technological barriers in the development of energy technologies.

- (A) identifying and promoting revolutionary advances in fundamental sciences;AND
- (B) translating scientific discoveries and cutting-edge inventions into technological innovations;AND
- (C) accelerating
 transformational
 technological advances in
 areas that industry by itself
 is not likely to undertake
 because of technical and
 financial uncertainty.

Technology Push – Market Pull

ARPA-E Programs

Broad Solicitation

GRIDS

Stationary Power

Building Energy Efficiency Through Innovative Thermodevices (BEETIT)

Dr. Ravi Prasher

Building cooling is responsible for ~5% of US primary energy consumption and CO₂ emissions

(MechE, ASU; Intel)

Reduce primary energy consumption by $\sim 40 - 50\%$

High-Efficiency, on-Line Membrane Air Dehumidifier Enabling Sensible Cooling for Warm and Humid Climates

arpa.e

Refrigeration unit

Can potentially beat FOA target by ~50%

What is an ARPA-E Project?

IMPACT

If successful, project could have:

- High impact on ARPA-E mission areas
- Large commercial application

BREAKTHROUGH TECHNOLOGY

Technologies that:

- Do not exist in today's energy market
 - Are not just incremental improvements; could make today's technologies obsolete

ADDITIONALITY

- Difficult to move forward without ARPA-E funding
- But able to attract cost share and follow-on funding
- Not already being researched or funded by others

PEOPLE

- Best-in-class people
- Teams with both scientists and engineers
- Brings new people, talent and skill sets to energy R&D

ARPA-E DNA: Speed and Efficiency

Recruiting Program Directors (3-4 Years Term)

- Scientific and engineering rigor, depth & breadth
- Intellectual flexibility to move into new fields
- Creativity and openness to new approaches
- Span science/engineering and technology development, with understanding of business/markets
- Serve the nation at a critical time and make national/global impact
- Funding level is \$30-40M per program

